
CS149



 

Anatomy of a Java
Program: Comments

● Javadoc comments:

● Everything between /** and */ ignored by
compiler

● Used to generate code documentation

/**
 * Application that converts inches to centimeters.
 *
 * @author Alvin Chao
 * @version 01/21/2014
 */



 

Anatomy of a Java
Program: Comments

● Block comments are used for text that should
not be part of the published documentation:

● In-line comments are used for short clarifying
statements:

// Create a scanner for standard input.

/* 
   Permission is hereby granted, free of charge, to any
   person obtaining a copy of this software and associated
   documentation files (the "Software"), to deal in the
   Software without restriction. 
*/



 

Anatomy of a Java
Program: Classes

● Java is an object-oriented language (OO)
– Java classes tie together instructions and data
– All Java code must exist within some class

● public and class are keywords: Words that have a special meaning for
Java.
– public – (more later)

– class – Create a class with the following name. (Must match the file name)
– Class names are always captalized

● Braces { and } enclose blocks of code

public class ConvertInches {

}



 

Anatomy of a Java
Program: Methods

● Method –  named
collection of Java
statements:

public class ConvertInches {

   public static void main(String[] args) {
   
   }
}

Late
r
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Anatomy of a Java
Program: Methods

● Method –  named
collection of Java
statements:

public class ConvertInches {

   public static void main(String[] args) {
   
   }
}

Late
r

return type
(void
means
nothing is
returned)

method name 
“main” is the starting
point for all Java
programs

argument type 
String[] means
that this method takes
an array of Strings.

argument name 
args will be an array of
Strings from the command
line.
 args[0], args[1], etc.



 

Anatomy of a Java Program:
Declaring and Assigning

Variables

● variable – named box for storing data:

 int inch;
 double cent;
 final double CENT_PER_INCH;

 CENT_PER_INCH = 2.54;

type
Defines what
the variable can
hold

name
Should always be
informative. “x” is not OK.
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● variable – named box for storing data:

 int inch;
 double cent;
 final double CENT_PER_INCH;

 CENT_PER_INCH = 2.54;

type
Defines what
the variable can
hold

name
Should always be
informative. “x” is not OK.

final

makes this
variable a
constant

literal valueassignment
Puts the value on the right
into the variable on the left.
ALWAYS RIGHT TO LEFT!



 

Anatomy of a Java Program: Standard
Library and Keyboard Input

import java.util.Scanner;

/**
* Application that converts inches to
centimeters.
*
* @author Chris Mayfield
* @version 01/21/2014
*/
public class ConvertInches {

   public static void main(String[] args) {
      int inch;
      double cent;
      final double CENT_PER_INCH;
      CENT_PER_INCH = 2.54;
      
      // Create a scanner for standard input.
      Scanner keyboard;
      keyboard = new Scanner(System.in);
      
      // Prompt the user and get the value.
      System.out.print("How many inches? ");
      inch = keyboard.nextInt();

import
“Brings in” external
classes

The Scanner class,
along with System.in 
are used to read user
input from the terminal



Putting it all together...
import java.util.Scanner;

/**
* Application that converts inches to centimeters.
*
* @author Chris Mayfield
* @version 01/21/2014
*/
public class ConvertInches {

   public static void main(String[] args) {
      int inch;
      double cent;
      final double CENT_PER_INCH;
      CENT_PER_INCH = 2.54;
      
      // Create a scanner for standard input.
      Scanner keyboard;
      keyboard = new Scanner(System.in);
      
      // Prompt the user and get the value.
      System.out.print("How many inches? ");
      inch = keyboard.nextInt();
      
      // Convert and output the result.
      cent = inch * CENT_PER_INCH;
      System.out.print(inch + "in = ");
      System.out.println(cent + "cm ");
   }
   
}

multiplication

+ joins strings (or
adds numbers)



 

Reminder: Portability

● Most “high-level” languages are considered
portable because they can be compiled into
machine code for any computer:

C Program

x86 Compiler

ARM Compiler

x86 Program

ARM Program



 

Java Compilation

● Byte Code Files are
portable because there
are JVM's that run on
most machines

● The same compiled byte
code works on any JVM



Which is Syntactically Correct?
public static void main(String[] args)
{
      System.out.println("Hello " + args[0] + "!");
      System.out.println("Welcome to CS139.");
}

public class Personal {
   public static void main(String[] args)
   {
      System.out.println("Hello " + args[0] + "!");
      System.out.println("Welcome to CS139.");
   }
}

public class Personal
{
   // public static void main(String[] args)
   {
      System.out.println("Hello " + args[0] + "!");
      System.out.println("Welcome to CS139.");
   }
}



Which is Syntactically Correct? (File
name is Good.java)

public class Welcome {
   public static void main(String[] args)
   {
      String name;
      name = "Bob";
      System.out.println("Hello " + name + "!");
      System.out.println("Welcome to CS139.");
   }
}

public class Good {
   public static void main(String[] args)
   {
      String name;
      "Bob" = name;
      System.out.println("Hello " + name + "!");
      System.out.println("Welcome to CS139.");
   }
}

public class Good {
   public static void main(String[] args)
   {
      String name;
      name = "Bob";
      System.out.println("Hello " + name + "!");
      System.out.println("Welcome to CS139.");
   }
}



Which is Syntactically Correct?
public class Good 
   public static void main(String[] args)
   {
      String name;
      name = "Bob";
      System.out.println("Hello " + name + "!");
      System.out.println("Welcome to CS139.");
   }
}

public class Good {
   public static void main(String[] args)
   {
      String name;
      name = "Bob";
      System.out.println("Hello " + name + "!")
      System.out.println("Welcome to CS139.");
   }
}

public class Good {
   public static void main(String[] args){
      String name; name = "Bob";
        System.out.println("Hello " + name + "!");
     System.out.println("Welcome to CS139.");}
}
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