
CS149

Anatomy of a Java
Program: Comments

● Javadoc comments:

● Everything between /** and */ ignored by
compiler

● Used to generate code documentation

/**
 * Application that converts inches to centimeters.
 *
 * @author Alvin Chao
 * @version 01/21/2014
 */

Anatomy of a Java
Program: Comments

● Block comments are used for text that should
not be part of the published documentation:

● In-line comments are used for short clarifying
statements:

// Create a scanner for standard input.

/*
 Permission is hereby granted, free of charge, to any
 person obtaining a copy of this software and associated
 documentation files (the "Software"), to deal in the
 Software without restriction.
*/

Anatomy of a Java
Program: Classes

● Java is an object-oriented language (OO)
– Java classes tie together instructions and data
– All Java code must exist within some class

● public and class are keywords: Words that have a special meaning for
Java.
– public – (more later)

– class – Create a class with the following name. (Must match the file name)
– Class names are always captalized

● Braces { and } enclose blocks of code

public class ConvertInches {

}

Anatomy of a Java
Program: Methods

● Method – named
collection of Java
statements:

public class ConvertInches {

 public static void main(String[] args) {

 }
}

Late
r

Anatomy of a Java
Program: Methods

● Method – named
collection of Java
statements:

public class ConvertInches {

 public static void main(String[] args) {

 }
}

Late
r

return type
(void
means
nothing is
returned)

Anatomy of a Java
Program: Methods

● Method – named
collection of Java
statements:

public class ConvertInches {

 public static void main(String[] args) {

 }
}

Late
r

return type
(void
means
nothing is
returned)

method name
“main” is the starting
point for all Java
programs

Anatomy of a Java
Program: Methods

● Method – named
collection of Java
statements:

public class ConvertInches {

 public static void main(String[] args) {

 }
}

Late
r

return type
(void
means
nothing is
returned)

method name
“main” is the starting
point for all Java
programs

argument type
String[] means
that this method takes
an array of Strings.

Anatomy of a Java
Program: Methods

● Method – named
collection of Java
statements:

public class ConvertInches {

 public static void main(String[] args) {

 }
}

Late
r

return type
(void
means
nothing is
returned)

method name
“main” is the starting
point for all Java
programs

argument type
String[] means
that this method takes
an array of Strings.

argument name
args will be an array of
Strings from the command
line.
 args[0], args[1], etc.

Anatomy of a Java Program:
Declaring and Assigning

Variables

● variable – named box for storing data:

 int inch;
 double cent;
 final double CENT_PER_INCH;

 CENT_PER_INCH = 2.54;

type
Defines what
the variable can
hold

name
Should always be
informative. “x” is not OK.

Anatomy of a Java Program:
Declaring and Assigning

Variables

● variable – named box for storing data:

 int inch;
 double cent;
 final double CENT_PER_INCH;

 CENT_PER_INCH = 2.54;

type
Defines what
the variable can
hold

name
Should always be
informative. “x” is not OK.

literal valueassignment
Puts the value on the right
into the variable on the left.
ALWAYS RIGHT TO LEFT!

Anatomy of a Java Program:
Declaring and Assigning

Variables

● variable – named box for storing data:

 int inch;
 double cent;
 final double CENT_PER_INCH;

 CENT_PER_INCH = 2.54;

type
Defines what
the variable can
hold

name
Should always be
informative. “x” is not OK.

final

makes this
variable a
constant

literal valueassignment
Puts the value on the right
into the variable on the left.
ALWAYS RIGHT TO LEFT!

Anatomy of a Java Program: Standard
Library and Keyboard Input

import java.util.Scanner;

/**
* Application that converts inches to
centimeters.
*
* @author Chris Mayfield
* @version 01/21/2014
*/
public class ConvertInches {

 public static void main(String[] args) {
 int inch;
 double cent;
 final double CENT_PER_INCH;
 CENT_PER_INCH = 2.54;

 // Create a scanner for standard input.
 Scanner keyboard;
 keyboard = new Scanner(System.in);

 // Prompt the user and get the value.
 System.out.print("How many inches? ");
 inch = keyboard.nextInt();

import
“Brings in” external
classes

The Scanner class,
along with System.in
are used to read user
input from the terminal

Putting it all together...
import java.util.Scanner;

/**
* Application that converts inches to centimeters.
*
* @author Chris Mayfield
* @version 01/21/2014
*/
public class ConvertInches {

 public static void main(String[] args) {
 int inch;
 double cent;
 final double CENT_PER_INCH;
 CENT_PER_INCH = 2.54;

 // Create a scanner for standard input.
 Scanner keyboard;
 keyboard = new Scanner(System.in);

 // Prompt the user and get the value.
 System.out.print("How many inches? ");
 inch = keyboard.nextInt();

 // Convert and output the result.
 cent = inch * CENT_PER_INCH;
 System.out.print(inch + "in = ");
 System.out.println(cent + "cm ");
 }

}

multiplication

+ joins strings (or
adds numbers)

Reminder: Portability

● Most “high-level” languages are considered
portable because they can be compiled into
machine code for any computer:

C Program

x86 Compiler

ARM Compiler

x86 Program

ARM Program

Java Compilation

● Byte Code Files are
portable because there
are JVM's that run on
most machines

● The same compiled byte
code works on any JVM

Which is Syntactically Correct?
public static void main(String[] args)
{
 System.out.println("Hello " + args[0] + "!");
 System.out.println("Welcome to CS139.");
}

public class Personal {
 public static void main(String[] args)
 {
 System.out.println("Hello " + args[0] + "!");
 System.out.println("Welcome to CS139.");
 }
}

public class Personal
{
 // public static void main(String[] args)
 {
 System.out.println("Hello " + args[0] + "!");
 System.out.println("Welcome to CS139.");
 }
}

Which is Syntactically Correct? (File
name is Good.java)

public class Welcome {
 public static void main(String[] args)
 {
 String name;
 name = "Bob";
 System.out.println("Hello " + name + "!");
 System.out.println("Welcome to CS139.");
 }
}

public class Good {
 public static void main(String[] args)
 {
 String name;
 "Bob" = name;
 System.out.println("Hello " + name + "!");
 System.out.println("Welcome to CS139.");
 }
}

public class Good {
 public static void main(String[] args)
 {
 String name;
 name = "Bob";
 System.out.println("Hello " + name + "!");
 System.out.println("Welcome to CS139.");
 }
}

Which is Syntactically Correct?
public class Good
 public static void main(String[] args)
 {
 String name;
 name = "Bob";
 System.out.println("Hello " + name + "!");
 System.out.println("Welcome to CS139.");
 }
}

public class Good {
 public static void main(String[] args)
 {
 String name;
 name = "Bob";
 System.out.println("Hello " + name + "!")
 System.out.println("Welcome to CS139.");
 }
}

public class Good {
 public static void main(String[] args){
 String name; name = "Bob";
 System.out.println("Hello " + name + "!");
 System.out.println("Welcome to CS139.");}
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

