

Professor: Alvin Chao

CS149 – Array Activities

Array Memory Diagram

• int[] nums = {10, 3, 7, -5};

Draw a memory diagram for the following array declarations:

- int[] sizes = new int[5];
- sizes[2] = 7;
- char[] codes = new char[3];
- codes[2] = 'X';
- double[] costs = new double[4];
- costs[0] = 0.99;
- Die[] dice = new Die[2];
- dice[1] = new Die(6);

Array Initialization

• Arrays can be initialized using an initialization list enclosed in braces:

int[] sizes = {3, 5, 7, 2, 1};

String[] names = {"James", "Madison", "University"};

• However, this syntax only works for initialization. If an array has already been initialized, its contents can be changed with the following notation:

```
sizes = new int[] {55};
```

names = new String[] {"bob", "ann", "sue", "sam"};

Array Initialization

• Write *statements* that declare and initialize variables for the arrays.

3.23 1.52 4.23 32.5 2.45 5.23 3.3	3

Array Types and Values

- What is the type and value for each of the four *expressions* below?
 int[] a = {3, 6, 15, 22, 100, 0};
 double[] b = {3.5, 4.5, 2.0, 2.0, 2.0};
 String[] c = {"alpha", "beta", "gamma"};
- a[3] + a[2]
- b[2] b[0] + a[4]
- c[1].charAt(a[0])
- a[4] * b[1] <= a[5] * a[0]

Arrays and Loops

 The real power of arrays is the ability to process them using loops, i.e., performing the same task for multiple elements. The standard form of iteration is as follows:

```
for (int i = 0; i < array.length; i++) {
    ... process array[i]...</pre>
```

```
• For example:
```

}

```
// set all of the elements of x to -1.0
double[] x = new double[100];
for (int i = 0; i < x.length; i++) {
        x[i] = -1.0;
}
// sum the elements of scores
int sum = 0;
for (int i = 0; i < scores.length; i++) {
        sum += scores[i];
}</pre>
```

Tracing Array Code

• What is the value of array and accumulator after the following iteration? Trace the loop by hand.

```
int[] array = {5, 26, 13, 12, 37, 15, 16, 4, 1, 3};
int accumulator = 0;
for (int i = 0; i < array.length; i++) {
        if (array[i] % 2 == 1 && i + 1 < array.length) {
            array[i] *= -1;
            accumulator += array[i+1];
        }
```

Tracing Array Code

• What is the value of array and accumulator after the following iteration? Trace the loop by hand.

```
int[] array = {5, 26, 13, 12, 37, 15, 16, 4, 1, 3};
int accumulator = 0;
for (int i = 0; i < array.length; i++) {
       if (array[i] \% 2 == 1 \&\& i + 1 < array.length) {
               array[i] *= -1;
                                                        Accumulator: 72
                                                        0:-5
                                                        1:26
               accumulator += array[i+1];
                                                        2: -13
                                                        3:12
                                                        4:-37
                                                        5: -15
                                                        6:16
                                                        7:4
                                                        8: -1
                                                        9:3
```


Acknowledgements

Parts of this activity are based on materials developed by Chris Mayfield and Nathan Sprague.

</end>